

Cultivation of Microalgae with Membrane-Filtered Waste Water; Implications for Energy & Nutrient Recovery.

Pickett, Ozcan, Jean, Quiñones, Yeh, Moore and Love

Advanced Biofuels from Algae

- Cultured on non-agricultural areas, marginal lands or in the sea.
- Highly productive compared to land plants.
- Less water use than for crops.
- Potential to recycle mineral nutrients from waste water.
- Fix CO₂.

The Economic Barrier

 Algal products (biomass or oils) are too expensive compared to other biofuels to be profitable (land, CAPEX, culture type, predation, water pumping, harvesting, processing etc.

Breaking the Economic Barrier

- Options are to piggy-back on other processes to develop the technology; alternative foods, protein, HVCs, cosmetics etc.
- The Integrated Bio-Refinery concept Easy to say; Hard to do.

Research Incentive

Water and Energy Savings

- Treatment plants expend energy to remove nutrients before discharge.
- Coupling algal cultivation with wastewater treatment "Free" nutrient removal, a high value product and "how-to" knowledge.
- BUT, problems:
 - Competition / predation from existing wastewater biota.
 - Turbidity due to light penetration.
- Possible to separate algal culture from the wastewater (?)

Research Incentive

Is (urban) wastewater a suitable medium for algal cultivation?

Research Objectives

- Determine the effect of membrane pore size for waste water filtration on algal (Chlorella sorokiniana) growth and nutrient removal.
- Determine the effect of monoculture algal cultivation on the autochthonous microbial consortium in waste water using metagenomic analysis.

Countess Wear Treatment Plant

- Required to nitrify waste water to meet ammonia discharge limit, but no nitrate limits.
- In EU / UK, discharge standards are increasingly stringent.
- Algae may be used to remove nutrients to meet these limits.

Media

- Chu13 Media (Chu).
- Post-nitrification clarifier effluent stream (CE-Raw).
- CE filtered using rayflow cross-flow filtration modules (Orelis Environment) fitted with 0.1 µm (CE-MF) or 40 kDa (CE-UF)PVDF membranes.

Culture Conditions

- Algem Photobioreactors (Algenuity).
- Clarified effluent harvested in June from Countess Wear WWTP.
- Light and temperature profiles correspond to June in Exeter.
- OD₇₄₀ (algal growth) monitored at 2 h intervals for 7 days.
- 4 independent replicates per treatment.
- Randomised design.

Algal Growth

- Chu, CE-MF and CE-UF support similar levels of algal growth.
- Growth marginally reduced in CE (predation / competition).

Algal Growth

Growth rate of all cultures reduces over time.

Nutrient Removal

- Samples filtered through 0.1 µm Whatman filter at 0 and 7 days
- Total Nitrogen, Ammonia, Nitrate and Phosphorus determined.

	Total Nitrogen			Total Ammonia			Total Nitrate			Total Phosphorus		
	Initial	Final	%∆	Initial	Final	%Δ	Initial	Final	%∆	Initial	Final	%∆
Chu	46.0	31.2	31%	0.0	0.2	N/A	45.9	15.9	65%	63.4	1.6	97%
CE Raw	46.6	21.4	54%	4.8	0.1	99%	34.1	17.2	48%	15.5	0.0	100%
CE MF	44.0	21.3	52%	6.0	0.1	99%	37.6	17.7	53%	12.5	0.0	100%
CE UF	43.7	22.6	48%	5.8	0.0	100%	36.0	18.8	48%	9.5	0.0	100%

- Complete removal of Ammonia and Phosphorus.
- Approximately 50% of Nitrate removed.

Implications of Nutrient Removal

- Nutrient limitation may be reason for the observed slow down in culture growth rates.
- Closed systems, such as this batch study, may require additional nutrients to sustain maximal growth rates; Fed Batch.
- Open systems, such as a waste water treatment plant with continuously flowing waste water, should not require any supplements for growth – However, what is the optimum retention time (flow rate) in the culture?

Conclusions

- Clarified (urban) waste water effluent is a suitable medium for algal growth, though may result in competitive stress on cultured algae.
- Pore size of post-clarification filter had no effect on nutrient removal.
- Pore size of post-clarification filter little effect on overall algal growth.

Conclusions

- Wastewater Treatment Plants may gain some energy savings by coupling algal cultivation with normal treatment in the form of nutrient removal... further research is required to quantify.
- Necessity to balance algal growth and water flow with nutrient removal.
- A barrier may be required to protect an algal culture from predatory or competitor species endemic in wastewater.

Acknowledgements

- Algae: Melanie Pickett, Onur Ozcan, Anna Quiñones, Herbie Jean, Richard Tennant.
- Metagenomics: Richard Tennant, Karen Moore, Christine Sambles.
- Collaborators: Daniel Yeh (USF), Mike Allen (PML).

Funding: NSF Awards 1236746 and 1243510.